£6 million to explore impact of hazardous chemicals on UK ecosystems

9 August 2018

NERC has awarded £6 million to investigate the effects that potentially hazardous chemicals used by humans are having on UK habitats and wildlife.

Countryside

A workshop co-hosted by NERC, including representatives from government, regulation and industry, concluded that vital research needs to be done to understand the impact that new chemicals and combinations of chemicals are having on our ecosystems, and the animals and plants that depend on them.

With new chemicals constantly being used in agriculture, industry and everyday life, this research not only hopes to uncover unforeseen effects, but also to devise a new way for testing these impacts that can be applied to all types of ecosystems found in freshwater, at sea and on land.

The current standard method of testing determines how toxic individual chemicals are but is unable to look at the combined effects of a mixture of chemicals, which can be quite a different picture.

NERC Associate Director of Research Ned Garnett said:

Healthy and productive terrestrial, freshwater and marine ecosystems are vital to the economy and wellbeing of the UK. They play a key role in areas such as food production, providing clean water, absorbing carbon from the atmosphere and supporting sustainable fish stocks, as well as supporting our wildlife. This research will provide new evidence on how chemicals used in farming, industry and everyday life are impacting on these environments.

The grants were awarded to teams led by Professor Andrew Johnson and Dr David Spurgeon, both of the NERC Centre for Ecology & Hydrology (CEH), and Professor Guy Woodward at Imperial College, London.


Does the discharge of chemicals to the environment harm wildlife populations?

Professor Andrew Johnson, CEH

This project aims to identify which wildlife populations are doing well despite current chemical use and which are not. The assessment will be based on Britain's vast long-term wildlife population data and will be examined with respect to chemical exposure as well as a variety of other factors. Hundreds of millions of data records have been gathered over the past 40 years and examination of them for response to chemicals has never been done before on this scale.

Professor Johnson, an environmental research scientist at CEH, said:

We intend to review the vast treasure trove of UK records of wildlife populations, from freshwater invertebrates to sparrowhawks and dolphins, going back decades, to examine whether they have been or are being harmed by chemical exposure.


Classic and temporal mixture synergism in terrestrial ecosystems: Prevalence, mechanisms and impacts

Dr David Spurgeon, CEH

Comprising researchers from CEH, the University of Cardiff, the University of York and Imperial College London, this project will investigate the detailed mechanisms through which mixtures of pesticides and other chemicals affect terrestrial invertebrates.

The team will use a range of ecological, analytical, genetic and modelling methods to identify cases where a mixture of exposures result in greater effects than can be predicted by current widely used models, the biological causes of such effects and their impact on invertebrate populations and communities.

Dr Spurgeon, an ecotoxicologist at CEH, said:

Exposure to mixtures, rather than single chemicals, is the norm for many species. By better understanding how species respond to mixtures, we will be able to assess how important it is to consider combined exposures in general and especially effects like synergism in the management of chemicals in understudied terrestrial habitats.


A novel framework for predicting emerging chemical stressor impacts in complex ecosystems

Professor Guy Woodward, Imperial College London

The team led by Professor Guy Woodward is looking to pioneer a framework for assessing and predicting the impact of new chemicals on the environment. Their project will combine modelling, experimental manipulations and monitoring across a range of freshwater ecosystems that provide crucial services to society, from those driven by microbes at the base of the food web (for example, water purification) to those associated with fishes at the top. A major component of their work will also involve figuring out how emerging chemical threats will interact with the effects of climate change, like warming and drought.

Professor Guy Woodward, an ecologist at Imperial College London, said:

Currently, we cannot accurately predict the impacts of new chemicals on natural systems, from genes to entire ecosystems, so our aim is to develop novel techniques to bridge this gap. In addition to our own project, we are also very excited to work with the other successful bids in the call to create new complementary approaches and, hopefully, to deliver further benefits across the programme as a whole.

Find out more about NERC's Emerging Risks of Chemicals in the Environment programme.


Further information

Ione Bingley
NERC Press and Communications Officer
01793 411616
07864 972302


Notes

1. NERC is the UK's main agency for funding and managing research, training and knowledge exchange in the environmental sciences. Our work covers the full range of atmospheric, Earth, biological, terrestrial and aquatic science, from the deep oceans to the upper atmosphere and from the poles to the equator. We coordinate some of the world's most exciting research projects, tackling major issues such as climate change, environmental influences on human health, the genetic make-up of life on Earth, and much more. NERC is part of UK Research & Innovation, a non-departmental public body funded by a grant-in-aid from the UK government.

2. The Centre for Ecology & Hydrology (CEH) is the UK's Centre of Excellence for integrated research in the land and freshwater ecosystems and their interaction with the atmosphere. CEH is part of NERC, employs more than 450 people at four major sites in England, Scotland and Wales, hosts over 150 PhD students, and has an overall budget of about £35 million. CEH tackles complex environmental challenges to deliver practicable solutions so that future generations can benefit from a rich and healthy environment.

3. Imperial College London is one of the world's leading universities. The College's 17,000 students and 8,000 staff are expanding the frontiers of knowledge in science, medicine, engineering and business, and translating their discoveries into benefits for our society. Imperial is the UK's most international university, according to Times Higher Education, with academic ties to more than 150 countries. Reuters named the College as the UK's most innovative university because of its exceptional entrepreneurial culture and ties to industry.