Research gaps – medical needs

Prof Neil Woodford

Head, Antimicrobial Resistance & Healthcare Associated Infections (AMRHAI) Reference Unit

© Crown Copyright
Understanding the origins of resistance

• Where do clinically-relevant ‘R genes’ come from?
 - very poor knowledge even for prevalent types e.g. TEM
 - few exceptions e.g. CTX-M
 - defining better the resistome for last resort agents

• Where does ‘escape’ to clinically-relevant species occur?
 - How frequent are escape events?

• Can we explain the differential success of ‘R genes’?
 - How / where do they associate with integrons / IS / transposons / plasmids?
 - The dynamics of gene / carrier / host strain combinations

• Can we develop models of clinical impact and cost-effective interventions?
What happens in the human gut?

- Better understanding of:
 - ‘R gene’ transfer in the gut: colonists or during transient passage
 - the ecology of ‘high-risk clones’ (HiRiCs)
 - how do they compete with each other / normal flora?

- How are the above affected by antibiotics?

- Obscure gut microbiota as hosts of clinically-relevant ‘R genes’
 - confounders of rapid diagnostics or legitimate targets?
What happens in the environment?

- Better understanding of:
 - ‘R genes’ in clinically-relevant species in the environment
 - antibiotic residues in the environment
 - the ecology of resistance (blooms and extinctions)
 - hospital outflows vs. agricultural run off vs. industrial outflows
 - rivers vs. bathing waters
 - model exposure and assess public health risk
 - would interventions be cost-effective?
...and finally, a blatant advert

- extensive collections of MDR clinical isolates
- independent evaluations of:
 - diagnostics
 - AST platforms
 - developmental antibiotics
- Contact: neil.woodford@phe.gov.uk