AMR in the Real World
Announcements of Opportunity

Lizzie Garratt, NERC
Overview

• AMR in the Real World is a £6.5m programme under theme 3 of the AMR Cross-Council Initiative.

• This programme is co-funded by NERC, BBSRC and MRC with potential co-funding from AHRC.

• This programme will support two types of award:
 – larger Research Grants
 – smaller, more focussed Pump Priming Grants
Programme scope

• Aim: a greater understanding of the role of the outdoor environment and host microbiome in influencing the evolution, acquisition and spread of antimicrobial resistance, and as a reservoir for resistance.

• In scope:
 – antibacterials and resistant bacteria/bacterial resistance genes (of clinical and/or veterinary importance)
 – agricultural, aquaculture, wastewater and natural environments (freshwater, marine, soil, air, etc. and their interfaces), human and animal host microbiomes (gut, skin, respiratory, oral, etc.)
 – elements relating to the way people/human communities interact with the environment, animals and each other

• Out of scope:
 – antibacterial resistance in plant pathogens
 – the indoor environment (e.g. looking at surfaces in hospitals)
Scientific objectives

• 2 Work Packages – applicants can work on one or both.

• WP1: understanding the acquisition, spread and evolution of AMR in the environment and how this affects exposure risks for humans/animals.

• Three issues:
 1. Where are the antibacterials coming from, where are they and what happens to them?
 2. Where are the resistant bacteria/genes and how are they transferred.
 3. The processes and factors that control the selection of AMR genes.

• An exploration of how this can inform AMR policy and management strategies. E.g:
 – Predict the exposure risk to humans/animals and the corresponding implications for health and how the presence of humans/animals plays a role in the system.
 – Potential interventions and mitigation strategies to reduce emergence/transmission/exposure risk.
Scientific objectives

• WP2: understanding of the acquisition, spread and evolution of AMR in the host microbiome (human/animal)
 – interactions between resistant bacteria and the wider microbial community in the host
 – drivers of the emergence, evolution and co-selection of resistance
 – persistence/retention of resistance
 – how resistance genes are transferred within the microbiome, including pathogenic and commensal bacteria
 – the influence of the outdoor environment on these and the interaction between the host and the environment

• Applicants should identify whether the presence of resistant bacteria or resistance genes has implications for pathogens of clinical and/or veterinary importance.
Research Grants

- **Outline call closes 6 October 2015**
- £1.5m (100% FEC)
- Start by 1 May 2016 and end by 31 March 2020
- Requirement for interdisciplinarity and partnerships
- Outlines on email
- Assessment panel
- Full proposals will be invited to submit through JeS
- **Full call closes 3 December 2015**
- Peer review
- Moderating panel
Pump Priming Grants

• Call closes 3 December 2015
• £200k (100% FEC) for 12-36 months
• Start by 1 May 2016
• Narrower focus than the Research Grants
• High risk/high reward, novel, innovative, exploratory
• Encouraging interdisciplinarity and partnerships, where appropriate
• Early career researchers welcome
• Application through JeS
• Assessment panel
Overall timetable

• Town Meeting – 11 September 2015
• Outline Research Grants call closes – 6 October 2015
• Outline Research Grants panel – October 2015
• Full Research Grants and Pump Priming Grants calls close – 3 December 2015
• Panel – March 2016
• Grants start – May 2016
Questions?

• Quick questions
• More talks to follow
• Initial Q&A session with funders at 11.30
• Panel Q&A at 15.30
• One to one surgery sessions with funders at 16.05